3.4.78 \(\int \frac {(2+5 x+x^2) \sqrt {3+2 x+5 x^2}}{(1+4 x-7 x^2)^2} \, dx\) [378]

Optimal. Leaf size=199 \[ \frac {3 (3+61 x) \sqrt {3+2 x+5 x^2}}{154 \left (1+4 x-7 x^2\right )}+\frac {1}{49} \sqrt {5} \sinh ^{-1}\left (\frac {1+5 x}{\sqrt {14}}\right )-\frac {\sqrt {\frac {325022311+39132731 \sqrt {11}}{1397}} \tanh ^{-1}\left (\frac {23-\sqrt {11}+\left (17-5 \sqrt {11}\right ) x}{\sqrt {2 \left (125-17 \sqrt {11}\right )} \sqrt {3+2 x+5 x^2}}\right )}{2156}+\frac {\sqrt {\frac {325022311-39132731 \sqrt {11}}{1397}} \tanh ^{-1}\left (\frac {23+\sqrt {11}+\left (17+5 \sqrt {11}\right ) x}{\sqrt {2 \left (125+17 \sqrt {11}\right )} \sqrt {3+2 x+5 x^2}}\right )}{2156} \]

[Out]

1/49*arcsinh(1/14*(1+5*x)*14^(1/2))*5^(1/2)+3/154*(3+61*x)*(5*x^2+2*x+3)^(1/2)/(-7*x^2+4*x+1)+1/3011932*arctan
h((23+11^(1/2)+x*(17+5*11^(1/2)))/(5*x^2+2*x+3)^(1/2)/(250+34*11^(1/2))^(1/2))*(454056168467-54668425207*11^(1
/2))^(1/2)-1/3011932*arctanh((23+x*(17-5*11^(1/2))-11^(1/2))/(5*x^2+2*x+3)^(1/2)/(250-34*11^(1/2))^(1/2))*(454
056168467+54668425207*11^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 199, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1068, 1090, 633, 221, 1046, 738, 212} \begin {gather*} \frac {3 \sqrt {5 x^2+2 x+3} (61 x+3)}{154 \left (-7 x^2+4 x+1\right )}-\frac {\sqrt {\frac {325022311+39132731 \sqrt {11}}{1397}} \tanh ^{-1}\left (\frac {\left (17-5 \sqrt {11}\right ) x-\sqrt {11}+23}{\sqrt {2 \left (125-17 \sqrt {11}\right )} \sqrt {5 x^2+2 x+3}}\right )}{2156}+\frac {\sqrt {\frac {325022311-39132731 \sqrt {11}}{1397}} \tanh ^{-1}\left (\frac {\left (17+5 \sqrt {11}\right ) x+\sqrt {11}+23}{\sqrt {2 \left (125+17 \sqrt {11}\right )} \sqrt {5 x^2+2 x+3}}\right )}{2156}+\frac {1}{49} \sqrt {5} \sinh ^{-1}\left (\frac {5 x+1}{\sqrt {14}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((2 + 5*x + x^2)*Sqrt[3 + 2*x + 5*x^2])/(1 + 4*x - 7*x^2)^2,x]

[Out]

(3*(3 + 61*x)*Sqrt[3 + 2*x + 5*x^2])/(154*(1 + 4*x - 7*x^2)) + (Sqrt[5]*ArcSinh[(1 + 5*x)/Sqrt[14]])/49 - (Sqr
t[(325022311 + 39132731*Sqrt[11])/1397]*ArcTanh[(23 - Sqrt[11] + (17 - 5*Sqrt[11])*x)/(Sqrt[2*(125 - 17*Sqrt[1
1])]*Sqrt[3 + 2*x + 5*x^2])])/2156 + (Sqrt[(325022311 - 39132731*Sqrt[11])/1397]*ArcTanh[(23 + Sqrt[11] + (17
+ 5*Sqrt[11])*x)/(Sqrt[2*(125 + 17*Sqrt[11])]*Sqrt[3 + 2*x + 5*x^2])])/2156

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 633

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[1/(2*c*(-4*(c/(b^2 - 4*a*c)))^p), Subst[Int[Si
mp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1046

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbo
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2])
, x], x] - Dist[(2*c*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b,
c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && PosQ[b^2 - 4*a*c]

Rule 1068

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)*((d_) + (e_.)*(x_) + (f_.)*(x_
)^2)^(q_), x_Symbol] :> Simp[(A*b*c - 2*a*B*c + a*b*C - (c*(b*B - 2*A*c) - C*(b^2 - 2*a*c))*x)*(a + b*x + c*x^
2)^(p + 1)*((d + e*x + f*x^2)^q/(c*(b^2 - 4*a*c)*(p + 1))), x] - Dist[1/(c*(b^2 - 4*a*c)*(p + 1)), Int[(a + b*
x + c*x^2)^(p + 1)*(d + e*x + f*x^2)^(q - 1)*Simp[e*q*(A*b*c - 2*a*B*c + a*b*C) - d*(c*(b*B - 2*A*c)*(2*p + 3)
 + C*(2*a*c - b^2*(p + 2))) + (2*f*q*(A*b*c - 2*a*B*c + a*b*C) - e*(c*(b*B - 2*A*c)*(2*p + q + 3) + C*(2*a*c*(
q + 1) - b^2*(p + q + 2))))*x - f*(c*(b*B - 2*A*c)*(2*p + 2*q + 3) + C*(2*a*c*(2*q + 1) - b^2*(p + 2*q + 2)))*
x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && LtQ[
p, -1] && GtQ[q, 0] &&  !IGtQ[q, 0]

Rule 1090

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x
_)^2]), x_Symbol] :> Dist[C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + (B*c - b*C)*x)
/((a + b*x + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b^2 - 4*a*c
, 0] && NeQ[e^2 - 4*d*f, 0]

Rubi steps

\begin {align*} \int \frac {\left (2+5 x+x^2\right ) \sqrt {3+2 x+5 x^2}}{\left (1+4 x-7 x^2\right )^2} \, dx &=\frac {3 (3+61 x) \sqrt {3+2 x+5 x^2}}{154 \left (1+4 x-7 x^2\right )}-\frac {1}{308} \int \frac {-948-188 x+220 x^2}{\left (1+4 x-7 x^2\right ) \sqrt {3+2 x+5 x^2}} \, dx\\ &=\frac {3 (3+61 x) \sqrt {3+2 x+5 x^2}}{154 \left (1+4 x-7 x^2\right )}+\frac {\int \frac {6416+436 x}{\left (1+4 x-7 x^2\right ) \sqrt {3+2 x+5 x^2}} \, dx}{2156}+\frac {5}{49} \int \frac {1}{\sqrt {3+2 x+5 x^2}} \, dx\\ &=\frac {3 (3+61 x) \sqrt {3+2 x+5 x^2}}{154 \left (1+4 x-7 x^2\right )}+\frac {1}{98} \sqrt {\frac {5}{14}} \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{56}}} \, dx,x,2+10 x\right )+\frac {\left (1199-11446 \sqrt {11}\right ) \int \frac {1}{\left (4-2 \sqrt {11}-14 x\right ) \sqrt {3+2 x+5 x^2}} \, dx}{5929}+\frac {\left (1199+11446 \sqrt {11}\right ) \int \frac {1}{\left (4+2 \sqrt {11}-14 x\right ) \sqrt {3+2 x+5 x^2}} \, dx}{5929}\\ &=\frac {3 (3+61 x) \sqrt {3+2 x+5 x^2}}{154 \left (1+4 x-7 x^2\right )}+\frac {1}{49} \sqrt {5} \sinh ^{-1}\left (\frac {1+5 x}{\sqrt {14}}\right )-\frac {\left (2 \left (1199-11446 \sqrt {11}\right )\right ) \text {Subst}\left (\int \frac {1}{2352+112 \left (4-2 \sqrt {11}\right )+20 \left (4-2 \sqrt {11}\right )^2-x^2} \, dx,x,\frac {-84-2 \left (4-2 \sqrt {11}\right )-\left (28+10 \left (4-2 \sqrt {11}\right )\right ) x}{\sqrt {3+2 x+5 x^2}}\right )}{5929}-\frac {\left (2 \left (1199+11446 \sqrt {11}\right )\right ) \text {Subst}\left (\int \frac {1}{2352+112 \left (4+2 \sqrt {11}\right )+20 \left (4+2 \sqrt {11}\right )^2-x^2} \, dx,x,\frac {-84-2 \left (4+2 \sqrt {11}\right )-\left (28+10 \left (4+2 \sqrt {11}\right )\right ) x}{\sqrt {3+2 x+5 x^2}}\right )}{5929}\\ &=\frac {3 (3+61 x) \sqrt {3+2 x+5 x^2}}{154 \left (1+4 x-7 x^2\right )}+\frac {1}{49} \sqrt {5} \sinh ^{-1}\left (\frac {1+5 x}{\sqrt {14}}\right )-\frac {\sqrt {\frac {325022311+39132731 \sqrt {11}}{1397}} \tanh ^{-1}\left (\frac {23-\sqrt {11}+\left (17-5 \sqrt {11}\right ) x}{\sqrt {2 \left (125-17 \sqrt {11}\right )} \sqrt {3+2 x+5 x^2}}\right )}{2156}+\frac {\sqrt {\frac {325022311-39132731 \sqrt {11}}{1397}} \tanh ^{-1}\left (\frac {23+\sqrt {11}+\left (17+5 \sqrt {11}\right ) x}{\sqrt {2 \left (125+17 \sqrt {11}\right )} \sqrt {3+2 x+5 x^2}}\right )}{2156}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.52, size = 427, normalized size = 2.15 \begin {gather*} \frac {-\frac {5145 (3+61 x) \sqrt {3+2 x+5 x^2}}{-1-4 x+7 x^2}-5390 \sqrt {5} \log \left (-1-5 x+\sqrt {5} \sqrt {3+2 x+5 x^2}\right )-55 \text {RootSum}\left [83-16 \sqrt {5} \text {$\#$1}-70 \text {$\#$1}^2+8 \sqrt {5} \text {$\#$1}^3+7 \text {$\#$1}^4\&,\frac {-314239 \log \left (-\sqrt {5} x+\sqrt {3+2 x+5 x^2}-\text {$\#$1}\right )+28462 \sqrt {5} \log \left (-\sqrt {5} x+\sqrt {3+2 x+5 x^2}-\text {$\#$1}\right ) \text {$\#$1}-11221 \log \left (-\sqrt {5} x+\sqrt {3+2 x+5 x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{-4 \sqrt {5}-35 \text {$\#$1}+6 \sqrt {5} \text {$\#$1}^2+7 \text {$\#$1}^3}\&\right ]-6 \sqrt {5} \text {RootSum}\left [83-16 \sqrt {5} \text {$\#$1}-70 \text {$\#$1}^2+8 \sqrt {5} \text {$\#$1}^3+7 \text {$\#$1}^4\&,\frac {599633 \sqrt {5} \log \left (-\sqrt {5} x+\sqrt {3+2 x+5 x^2}-\text {$\#$1}\right )-391895 \log \left (-\sqrt {5} x+\sqrt {3+2 x+5 x^2}-\text {$\#$1}\right ) \text {$\#$1}+21462 \sqrt {5} \log \left (-\sqrt {5} x+\sqrt {3+2 x+5 x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{-4 \sqrt {5}-35 \text {$\#$1}+6 \sqrt {5} \text {$\#$1}^2+7 \text {$\#$1}^3}\&\right ]}{264110} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((2 + 5*x + x^2)*Sqrt[3 + 2*x + 5*x^2])/(1 + 4*x - 7*x^2)^2,x]

[Out]

((-5145*(3 + 61*x)*Sqrt[3 + 2*x + 5*x^2])/(-1 - 4*x + 7*x^2) - 5390*Sqrt[5]*Log[-1 - 5*x + Sqrt[5]*Sqrt[3 + 2*
x + 5*x^2]] - 55*RootSum[83 - 16*Sqrt[5]*#1 - 70*#1^2 + 8*Sqrt[5]*#1^3 + 7*#1^4 & , (-314239*Log[-(Sqrt[5]*x)
+ Sqrt[3 + 2*x + 5*x^2] - #1] + 28462*Sqrt[5]*Log[-(Sqrt[5]*x) + Sqrt[3 + 2*x + 5*x^2] - #1]*#1 - 11221*Log[-(
Sqrt[5]*x) + Sqrt[3 + 2*x + 5*x^2] - #1]*#1^2)/(-4*Sqrt[5] - 35*#1 + 6*Sqrt[5]*#1^2 + 7*#1^3) & ] - 6*Sqrt[5]*
RootSum[83 - 16*Sqrt[5]*#1 - 70*#1^2 + 8*Sqrt[5]*#1^3 + 7*#1^4 & , (599633*Sqrt[5]*Log[-(Sqrt[5]*x) + Sqrt[3 +
 2*x + 5*x^2] - #1] - 391895*Log[-(Sqrt[5]*x) + Sqrt[3 + 2*x + 5*x^2] - #1]*#1 + 21462*Sqrt[5]*Log[-(Sqrt[5]*x
) + Sqrt[3 + 2*x + 5*x^2] - #1]*#1^2)/(-4*Sqrt[5] - 35*#1 + 6*Sqrt[5]*#1^2 + 7*#1^3) & ])/264110

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1083\) vs. \(2(146)=292\).
time = 0.79, size = 1084, normalized size = 5.45

method result size
risch \(-\frac {3 \left (3+61 x \right ) \sqrt {5 x^{2}+2 x +3}}{154 \left (7 x^{2}-4 x -1\right )}+\frac {\sqrt {5}\, \arcsinh \left (\frac {5 \sqrt {14}\, \left (x +\frac {1}{5}\right )}{14}\right )}{49}+\frac {\left (-11446+109 \sqrt {11}\right ) \sqrt {11}\, \arctanh \left (\frac {250-34 \sqrt {11}+\frac {49 \left (\frac {34}{7}-\frac {10 \sqrt {11}}{7}\right ) \left (x -\frac {2}{7}+\frac {\sqrt {11}}{7}\right )}{2}}{\sqrt {250-34 \sqrt {11}}\, \sqrt {245 \left (x -\frac {2}{7}+\frac {\sqrt {11}}{7}\right )^{2}+49 \left (\frac {34}{7}-\frac {10 \sqrt {11}}{7}\right ) \left (x -\frac {2}{7}+\frac {\sqrt {11}}{7}\right )+250-34 \sqrt {11}}}\right )}{11858 \sqrt {250-34 \sqrt {11}}}+\frac {\left (11446+109 \sqrt {11}\right ) \sqrt {11}\, \arctanh \left (\frac {250+34 \sqrt {11}+\frac {49 \left (\frac {34}{7}+\frac {10 \sqrt {11}}{7}\right ) \left (x -\frac {2}{7}-\frac {\sqrt {11}}{7}\right )}{2}}{\sqrt {250+34 \sqrt {11}}\, \sqrt {245 \left (x -\frac {2}{7}-\frac {\sqrt {11}}{7}\right )^{2}+49 \left (\frac {34}{7}+\frac {10 \sqrt {11}}{7}\right ) \left (x -\frac {2}{7}-\frac {\sqrt {11}}{7}\right )+250+34 \sqrt {11}}}\right )}{11858 \sqrt {250+34 \sqrt {11}}}\) \(235\)
trager \(\text {Expression too large to display}\) \(512\)
default \(\text {Expression too large to display}\) \(1084\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2+5*x+2)*(5*x^2+2*x+3)^(1/2)/(-7*x^2+4*x+1)^2,x,method=_RETURNVERBOSE)

[Out]

(183/44+39/44*11^(1/2))*(-1/49/(250/49+34/49*11^(1/2))/(x-2/7-1/7*11^(1/2))*(5*(x-2/7-1/7*11^(1/2))^2+(34/7+10
/7*11^(1/2))*(x-2/7-1/7*11^(1/2))+250/49+34/49*11^(1/2))^(3/2)+1/98*(34/7+10/7*11^(1/2))/(250/49+34/49*11^(1/2
))*(1/7*(245*(x-2/7-1/7*11^(1/2))^2+49*(34/7+10/7*11^(1/2))*(x-2/7-1/7*11^(1/2))+250+34*11^(1/2))^(1/2)+1/10*(
34/7+10/7*11^(1/2))*5^(1/2)*arcsinh(5^(1/2)/(250/49+34/49*11^(1/2)-1/20*(34/7+10/7*11^(1/2))^2)^(1/2)*(x+1/5))
-7*(250/49+34/49*11^(1/2))/(250+34*11^(1/2))^(1/2)*arctanh(49/2*(500/49+68/49*11^(1/2)+(34/7+10/7*11^(1/2))*(x
-2/7-1/7*11^(1/2)))/(250+34*11^(1/2))^(1/2)/(245*(x-2/7-1/7*11^(1/2))^2+49*(34/7+10/7*11^(1/2))*(x-2/7-1/7*11^
(1/2))+250+34*11^(1/2))^(1/2)))+10/49/(250/49+34/49*11^(1/2))*(1/20*(10*x+2)*(5*(x-2/7-1/7*11^(1/2))^2+(34/7+1
0/7*11^(1/2))*(x-2/7-1/7*11^(1/2))+250/49+34/49*11^(1/2))^(1/2)+1/200*(5000/49+680/49*11^(1/2)-(34/7+10/7*11^(
1/2))^2)*5^(1/2)*arcsinh(5^(1/2)/(250/49+34/49*11^(1/2)-1/20*(34/7+10/7*11^(1/2))^2)^(1/2)*(x+1/5))))-161/484*
11^(1/2)*(1/49*(245*(x-2/7-1/7*11^(1/2))^2+49*(34/7+10/7*11^(1/2))*(x-2/7-1/7*11^(1/2))+250+34*11^(1/2))^(1/2)
+1/70*(34/7+10/7*11^(1/2))*5^(1/2)*arcsinh(5^(1/2)/(250/49+34/49*11^(1/2)-1/20*(34/7+10/7*11^(1/2))^2)^(1/2)*(
x+1/5))-(250/49+34/49*11^(1/2))/(250+34*11^(1/2))^(1/2)*arctanh(49/2*(500/49+68/49*11^(1/2)+(34/7+10/7*11^(1/2
))*(x-2/7-1/7*11^(1/2)))/(250+34*11^(1/2))^(1/2)/(245*(x-2/7-1/7*11^(1/2))^2+49*(34/7+10/7*11^(1/2))*(x-2/7-1/
7*11^(1/2))+250+34*11^(1/2))^(1/2)))+(183/44-39/44*11^(1/2))*(-1/49/(250/49-34/49*11^(1/2))/(x-2/7+1/7*11^(1/2
))*(5*(x-2/7+1/7*11^(1/2))^2+(34/7-10/7*11^(1/2))*(x-2/7+1/7*11^(1/2))+250/49-34/49*11^(1/2))^(3/2)+1/98*(34/7
-10/7*11^(1/2))/(250/49-34/49*11^(1/2))*(1/7*(245*(x-2/7+1/7*11^(1/2))^2+49*(34/7-10/7*11^(1/2))*(x-2/7+1/7*11
^(1/2))+250-34*11^(1/2))^(1/2)+1/10*(34/7-10/7*11^(1/2))*5^(1/2)*arcsinh(5^(1/2)/(250/49-34/49*11^(1/2)-1/20*(
34/7-10/7*11^(1/2))^2)^(1/2)*(x+1/5))-7*(250/49-34/49*11^(1/2))/(250-34*11^(1/2))^(1/2)*arctanh(49/2*(500/49-6
8/49*11^(1/2)+(34/7-10/7*11^(1/2))*(x-2/7+1/7*11^(1/2)))/(250-34*11^(1/2))^(1/2)/(245*(x-2/7+1/7*11^(1/2))^2+4
9*(34/7-10/7*11^(1/2))*(x-2/7+1/7*11^(1/2))+250-34*11^(1/2))^(1/2)))+10/49/(250/49-34/49*11^(1/2))*(1/20*(10*x
+2)*(5*(x-2/7+1/7*11^(1/2))^2+(34/7-10/7*11^(1/2))*(x-2/7+1/7*11^(1/2))+250/49-34/49*11^(1/2))^(1/2)+1/200*(50
00/49-680/49*11^(1/2)-(34/7-10/7*11^(1/2))^2)*5^(1/2)*arcsinh(5^(1/2)/(250/49-34/49*11^(1/2)-1/20*(34/7-10/7*1
1^(1/2))^2)^(1/2)*(x+1/5))))+161/484*11^(1/2)*(1/49*(245*(x-2/7+1/7*11^(1/2))^2+49*(34/7-10/7*11^(1/2))*(x-2/7
+1/7*11^(1/2))+250-34*11^(1/2))^(1/2)+1/70*(34/7-10/7*11^(1/2))*5^(1/2)*arcsinh(5^(1/2)/(250/49-34/49*11^(1/2)
-1/20*(34/7-10/7*11^(1/2))^2)^(1/2)*(x+1/5))-(250/49-34/49*11^(1/2))/(250-34*11^(1/2))^(1/2)*arctanh(49/2*(500
/49-68/49*11^(1/2)+(34/7-10/7*11^(1/2))*(x-2/7+1/7*11^(1/2)))/(250-34*11^(1/2))^(1/2)/(245*(x-2/7+1/7*11^(1/2)
)^2+49*(34/7-10/7*11^(1/2))*(x-2/7+1/7*11^(1/2))+250-34*11^(1/2))^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+5*x+2)*(5*x^2+2*x+3)^(1/2)/(-7*x^2+4*x+1)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(5*x^2 + 2*x + 3)*(x^2 + 5*x + 2)/(7*x^2 - 4*x - 1)^2, x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 378 vs. \(2 (145) = 290\).
time = 0.38, size = 378, normalized size = 1.90 \begin {gather*} -\frac {\sqrt {1397} {\left (7 \, x^{2} - 4 \, x - 1\right )} \sqrt {39132731 \, \sqrt {11} + 325022311} \log \left (-\frac {\sqrt {1397} \sqrt {5 \, x^{2} + 2 \, x + 3} \sqrt {39132731 \, \sqrt {11} + 325022311} {\left (16943 \, \sqrt {11} + 235367\right )} + 26119953475 \, \sqrt {11} {\left (x + 3\right )} - 78359860425 \, x + 130599767375}{x}\right ) - \sqrt {1397} {\left (7 \, x^{2} - 4 \, x - 1\right )} \sqrt {39132731 \, \sqrt {11} + 325022311} \log \left (\frac {\sqrt {1397} \sqrt {5 \, x^{2} + 2 \, x + 3} \sqrt {39132731 \, \sqrt {11} + 325022311} {\left (16943 \, \sqrt {11} + 235367\right )} - 26119953475 \, \sqrt {11} {\left (x + 3\right )} + 78359860425 \, x - 130599767375}{x}\right ) + \sqrt {1397} {\left (7 \, x^{2} - 4 \, x - 1\right )} \sqrt {-39132731 \, \sqrt {11} + 325022311} \log \left (\frac {\sqrt {1397} \sqrt {5 \, x^{2} + 2 \, x + 3} {\left (16943 \, \sqrt {11} - 235367\right )} \sqrt {-39132731 \, \sqrt {11} + 325022311} + 26119953475 \, \sqrt {11} {\left (x + 3\right )} + 78359860425 \, x - 130599767375}{x}\right ) - \sqrt {1397} {\left (7 \, x^{2} - 4 \, x - 1\right )} \sqrt {-39132731 \, \sqrt {11} + 325022311} \log \left (-\frac {\sqrt {1397} \sqrt {5 \, x^{2} + 2 \, x + 3} {\left (16943 \, \sqrt {11} - 235367\right )} \sqrt {-39132731 \, \sqrt {11} + 325022311} - 26119953475 \, \sqrt {11} {\left (x + 3\right )} - 78359860425 \, x + 130599767375}{x}\right ) - 61468 \, \sqrt {5} {\left (7 \, x^{2} - 4 \, x - 1\right )} \log \left (-\sqrt {5} \sqrt {5 \, x^{2} + 2 \, x + 3} {\left (5 \, x + 1\right )} - 25 \, x^{2} - 10 \, x - 8\right ) + 117348 \, \sqrt {5 \, x^{2} + 2 \, x + 3} {\left (61 \, x + 3\right )}}{6023864 \, {\left (7 \, x^{2} - 4 \, x - 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+5*x+2)*(5*x^2+2*x+3)^(1/2)/(-7*x^2+4*x+1)^2,x, algorithm="fricas")

[Out]

-1/6023864*(sqrt(1397)*(7*x^2 - 4*x - 1)*sqrt(39132731*sqrt(11) + 325022311)*log(-(sqrt(1397)*sqrt(5*x^2 + 2*x
 + 3)*sqrt(39132731*sqrt(11) + 325022311)*(16943*sqrt(11) + 235367) + 26119953475*sqrt(11)*(x + 3) - 783598604
25*x + 130599767375)/x) - sqrt(1397)*(7*x^2 - 4*x - 1)*sqrt(39132731*sqrt(11) + 325022311)*log((sqrt(1397)*sqr
t(5*x^2 + 2*x + 3)*sqrt(39132731*sqrt(11) + 325022311)*(16943*sqrt(11) + 235367) - 26119953475*sqrt(11)*(x + 3
) + 78359860425*x - 130599767375)/x) + sqrt(1397)*(7*x^2 - 4*x - 1)*sqrt(-39132731*sqrt(11) + 325022311)*log((
sqrt(1397)*sqrt(5*x^2 + 2*x + 3)*(16943*sqrt(11) - 235367)*sqrt(-39132731*sqrt(11) + 325022311) + 26119953475*
sqrt(11)*(x + 3) + 78359860425*x - 130599767375)/x) - sqrt(1397)*(7*x^2 - 4*x - 1)*sqrt(-39132731*sqrt(11) + 3
25022311)*log(-(sqrt(1397)*sqrt(5*x^2 + 2*x + 3)*(16943*sqrt(11) - 235367)*sqrt(-39132731*sqrt(11) + 325022311
) - 26119953475*sqrt(11)*(x + 3) - 78359860425*x + 130599767375)/x) - 61468*sqrt(5)*(7*x^2 - 4*x - 1)*log(-sqr
t(5)*sqrt(5*x^2 + 2*x + 3)*(5*x + 1) - 25*x^2 - 10*x - 8) + 117348*sqrt(5*x^2 + 2*x + 3)*(61*x + 3))/(7*x^2 -
4*x - 1)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (x^{2} + 5 x + 2\right ) \sqrt {5 x^{2} + 2 x + 3}}{\left (7 x^{2} - 4 x - 1\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2+5*x+2)*(5*x**2+2*x+3)**(1/2)/(-7*x**2+4*x+1)**2,x)

[Out]

Integral((x**2 + 5*x + 2)*sqrt(5*x**2 + 2*x + 3)/(7*x**2 - 4*x - 1)**2, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+5*x+2)*(5*x^2+2*x+3)^(1/2)/(-7*x^2+4*x+1)^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{184473632,[8]%%%}+%%%{%%{[421654016,0]:[1,0,-5]%%},[7]%%
%}+%%%{-248

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (x^2+5\,x+2\right )\,\sqrt {5\,x^2+2\,x+3}}{{\left (-7\,x^2+4\,x+1\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((5*x + x^2 + 2)*(2*x + 5*x^2 + 3)^(1/2))/(4*x - 7*x^2 + 1)^2,x)

[Out]

int(((5*x + x^2 + 2)*(2*x + 5*x^2 + 3)^(1/2))/(4*x - 7*x^2 + 1)^2, x)

________________________________________________________________________________________